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FOREWORD 
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Corporation, Los Angeles, California, under Program Element 64215F, System 139A, 
Task 01 A. 
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F40600-72-C-0003. The tests were conducted from June 23 to July 20, 1971, under ARO 
Project No. PT0177. The manuscript was submitted for publication on September 3,1971. 
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Lt Colonel, USAF Colonel, USAF 
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ABSTRACT 

Results are presented of a wind tunnel investigation of a 0.1-scale model of the 
left-hand dual inlet air induction system of the B-l aircraft. The test was conducted from 
Mach number 0.55 to 2.2 over an angle-of-attack range from -4 to 13 deg and yaw angles 
of -8 to 5 deg. Inlet performance in terms of compressor-face total-pressure recovery, 
total-pressure distortion, and turbulence index is presented as a function of inlet mass-flow 
ratios for various inlet geometries and model attitudes. The total-pressure recovery of the 
mixed-compression inlet was very good, but the total-pressure distortion at critical 
mass-flow ratios was higher than normally desired for satisfactory turbine engine operation. 
Best performance was realized with ramp and throat height schedules determined from 
previous testing. Effects of angle of attack and yaw were seen as general sidewash effects. 
The addition of canard-type fins had negligible effect on inlet performance. 

Distribution limited to U. S. Government agencies only; 
this report contains information on test and evaluation 
of military hardware; October 1971; other requests for 
this document must be referred to Aeronautical Systems 
Division (YHT), Wright-Patterson AFB, OH 45433. 
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MFRBp Bypass door mass-flow ratio: ratio of the mass flow bypassed overboard 
through the bypass doors to the inlet capture mass flow. The inlet capture mass 
flow is defined as the captured stream tube for the inlet projected area with 
the model at 0-deg angle of attack and yaw 

MFR.2 Engine mass-flow ratio: ratio of compressor-face station mass flow to inlet 
capture mass flow 

M«, Free-stream Mach number 

NBL Nacelle buttock line, in. 

NRP Nacelle reference plane 

NS Nacelle station, in. 

NWL Nacelle waterline, in. 

N2 Compressor-face   total-pressure   recovery:   the   average   compressor-face   total 
pressure ratioed to free-stream total pressure, (p"t2/PtÄ) 

O Outboard inlet of the left-hand dual air induction system 

Prm s        Compressor-face root-mean-square value of total pressure, psf 

Pim s Area weighted average compressor-face root-mean-square value of total pressure, 
psf 

Pt2 Compressor-face total pressure, psfa 

Pt2 Area weighted average compressor-face total pressure, psfa 
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vu 
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Model - angle  of attack (angle between the fuselage reference line and jthe 
relative wind projected into the plane of symmetry), nose up is positive, deg' 

Model angle of yaw (angle between the plane of symmetry and the relative 
wind), nose right is positive, deg 

vm 
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SECTION I 
INTRODUCTION 

At the request of North American Rockwell Corporation (NARC), a series of 
development tests on the B-l aircraft air induction system was initiated under the 
sponsorship of the Aeronautical Systems Division (ASD), Air Force Systems Command 
(AFSC). This series included testing in both of the 16-ft Propulsion Wind Tunnels, 
Transonic (16T) and Supersonic (16S), with a 0.10-scale model through the Mach number 
range from 0.55 to 2.20. 

The primary purpose of the tests reported herein was to determine the steady- and 
unsteady-state performance of the B-l inlet by evaluating the effects of angle of attack, 
angle of yaw, and various model configurations at subsonic and supersonic Mach numbers. 

Representative data presented herein are in the form of inlet total-pressure recovery, 
total-pressure distortion, and turbulence index as a function of inlet mass-flow ratios. 

SECTION II 
APPARATUS 

2.1 TEST FACILITY 

Tunnels 16T and 16S are closed-circuit, continuous flow tunnels which can be 
operated in the Mach number range from 0.2 to 1.6 and 1.5 to 4.75, respectively. A 
complete description of their physical facilities and operating characteristics is presented 
in Ref. 1. 

2.2 TEST ARTICLE 

The test article was a 0.10-scale model of the North American Rockwell Corporation 
B-l Air Vehicle (Fig. 1, Appendix I). The axial location of the model and model support 
systems is shown in Figs. 2a and b for Tunnels 16S and 16T, respectively. Photographs 
of the model installation in Tunnels 16S and 16T are shown in Figs. 3a and b, respectively. 

The test model simulated the air vehicle fuselage forebody, 65-deg-sweep stub wings, 
and the left-hand, two-engine nacelle (Fig. 3a). Provisions were made for installing 
"soft-ride" fins (Figs. 3b and 4) near the front of the forebody. 

Both inlets were of the mixed compression type in design and duplicated the air 
vehicle internal lines to the engine face station. Although of opposite hand, the inlets 
were geometrically similar. The nacelle external lines were duplicated to a point just aft 
of the sideplate and cowl leading edges, as well as in the region of the bypass doors 
on the cowl side. 

The ramp side of each inlet consisted of a fixed first ramp and remotely controlled 
movable second, third, fourth (throat), and fifth (diffuser) ramps (Fig. 5). Because of 
the linkage arrangement, the third ramp was slaved to the second and fourth ramps, and 
the diffuser ramp was slaved and positioned by the trailing edge of the fourth ramp. 
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Boundary-layer control (BLC) was provided for each inlet by porous internal surfaces 
on the second, third, and fourth ramps, the upper and lower sideplates, and the cowl. 
The BLC system was compartmented into four separate bleed zones such that bleed air 
would not flow from one zone into adjacent zones. The bleed zones and percentage of 
porosity of the various surfaces are shown in Fig. 6. Bleed air from Zone I exited on 
the wing upper surface, Zones II and III exited through the lower sideplate, and Zone 
IV exited through the cowl. Bleed Zone I had a fixed exit which was manually adjustable 
from fully open to closed, but Zones II, III, and IV had remotely variable exit areas. 
The remotely variable exits were of the choked plug variety actuated by direct-current 
drive motors. 

Each inlet had two remotely variable bypass doors (Fig. 5) for matching inlet-supply 
with engine-demand airflow. The two doors were linked together to utilize one hydraulic 
actuator per inlet. 

Simulated engine airflow was controlled with flow throttling vanes located just 
downstream of each engine-face station. The throttling vanes were followed by a transition 
section (including flow-straightening screens) and an ASME-type airflow metering section. 
The flow throttling vanes were hydraulically actuated independently and were remotely 
operated with closed-loop servocontrols. 

The wing-nacelle boundary-layer diverter was set at a basic height of 0.70 in. (Fig. 
7) measured from the leading edge of the upper sideplate to the wing moldline at the 
cowl-sideplate junction. Diverter height could be varied by installing or removing shims. 
Additional test article details may be found in Ref. 2. 

2.3    INSTRUMENTATION 

The model was heavily instrumented with steady- and unsteady-state pressure 
instrumentation. The steady-state pressure instrumentation was located on the wing surface, 
internal cowl surface, ramp surfaces, in the boundary-layer bleed control plenums and 
metering tubes, the internal and external surfaces of the bypass doors, the simulated engine 
faces, and in the main duct metering tubes, Figs. 8 and 9. The unsteady-state 
instrumentation consisted of flush-mounted transducers on the wing, ramp, and cowl 
surfaces and total-pressure probes on the simulated engine face, Figs. 8 and 9. 

The simulated engine face steady and unsteady pressures were measured with 
dual-purpose probes as shown in Fig 8. The array consisted of eight five-tube rakes on 
equal-area centers. 

All steady-state transducer outputs were scanned into an on-line computer system 
which reduced the raw data to engineering units, computed pertinent parameters, and 
tabulated and plotted the results. Test results were continually monitored in this fashion. 
Details of the AEDC standard 16-ft tunnel recording system are given in Ref.  1. 

High-frequency pressure fluctuations were measured by user-furnished 25-psid pressure 
transducers and were recorded on constant bandwidth FM multiplex recording systems. 
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The signals from the simulated engine face dynamic transducers were also paralleled to 
true rms/dc converters to obtain unsteady (rms) pressure levels. 

Model angle of attack relative to the tunnel centerline was measured by means of 
a model-mounted pendulum angle sensor. Model yaw angle and model component positions 
were sensed with potentiometers. 

SECTION III 
PROCEDURE 

After the tunnel free-stream total pressure and Mach number were established (Fig. 
10), the model was positioned to the desired angle of attack and yaw. Model variables 
such as second-ramp angle (RB, I, O), throat ramp position (TH, I, O), bypass door position 
(U), and mass-flow controls were varied to study the desired effect. At most test conditions, 
inlet pressure data were obtained for a range of engine mass-flow ratios from subcritical 
to supercritical for Mach number 1.7 and lower (unstarted inlet), and from peak recovery 
to supercritical (started inlet), or from buzz to supercritical (unstarted inlet), for Mach 
number 2.2. Mass-flow variation was controlled by positioning the flow control vanes 
located aft of the simulated engine face. Onset of inlet buzz was determined from the 
output of dynamic pressure transducers located in the inlet duct and on the simulated 
engine face. 

For Mach numbers 1.4, 1.7, and 2.2, the local Mach number on the first ramp of 
each inlet was determined for various angles of attack and yaw (Table I, Appendix II). 
These values of local Mach number were used to schedule the second-ramp angle and 
throat ramp position as determined from previous testing in the NAR trisonic wind tunnel 
(see Figs. 11 and 12 and Ref. 3). 

SECTION IV 
RESULTS AND DISCUSSION 

Test results are presented for a 0.1-scale inlet model of the North American Rockwell 
B-l aircraft. Inlet performance in terms of compressor-face total-pressure recovery (N2), 
total-pressure distortion (D2), and turbulence index (TI2) is presented as a function of 
engine mass-flow ratio (MFR2) or bypass mass-flow ratio (MFRßp) for the test variables. 
The only configuration variable was the addition of the soft-ride fins (Fig. 3b) to the 
forward fuselage. Except for the bypass data presented, the bypass area was sealed. The 
boundary-layer bleed exits were held constant at fixed areas for the data presented herein. 

Only the significant aspects of the steady- and unsteady-state pressure data are 
presented in this report. Complete analysis of the unsteady-state data is a long-term task 
and beyond the scope of this report. 
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4.1 EFFECT OF MODEL VARIABLES 

4.1.1 Effect of Second-Ramp Angle 

The effect of the second-ramp angle on inlet performance at M„. = 0.85, 1.7, and 
2.2 for a representative cruise angle of attack is shown in Figs. 13, 14, and IS, respectively. 

Increasing the second-ramp angle at M„ = 0.85, Fig. 13, produced negligible effects 
until a "critical" angle was reached where a loss in supercritical mass flow was noticed. 
The value of this "critical" angle decreased as throat height increased. At the scheduled 
throat height of 2.8 in., the outboard inlet was more sensitive to the effect in addition 
to having a slightly lower recovery. This reduction in mass-flow ratio was caused by shifting 
the minimum (choked) area of the inlet from the throat ramp to the area of the third 
ramp at the higher values of second-ramp angle and throat height. 

At M„ = 1.7, Fig. 14, the inlet was operated unstarted (external compression). 
Increasing the second-ramp angle again reduced the supercritical mass-flow ratios by spilling 
flow over the cowl lip but increased performance for the subcritical mass-flow ratios. There 
was essentially no difference between inboard and outboard inlet performance. 

With inlet started (mixed compression) operation at M„ = 2.2, Fig. 15, a loss in 
mass-flow ratio and performance was noted as the ramp angle was increased to more than 
12.5 deg. Peak performance for both inlets occurred with the second-ramp angle at about 
10 deg where the inboard inlet showed a slight superiority. 

For the conditions presented, the scheduled second-ramp angle at the scheduled throat 
height exhibited equal or better performance characteristics than the off-schedule 
second-ramp angles. However, the total-pressure distortion near critical mass-flow ratios 
was 10 percent or greater for all conditions. 

4.1.2 Effect of Throat Height 

Throat height effects at M„ = 0.85, 1.7, and 2.2 for a representative cruise angle 
of attack are shown in Figs.  16, 17, and 18, respectively. 

Decreasing the throat height at M„ = 0.85 and 1.7 for any given second-ramp angle 
did not produce any significant effects except for the expected reduction in supercritical 
mass-flow ratio. The scheduled throat heights and second-ramp angles again exhibited the 
best performance characteristics. At M«, = 2.2, an increase of the percentage of unstart 
throat height from 105 percent to 117 percent resulted in a loss in peak recovery of 
approximately 3 percent. 

The total-pressure distortion was 10 percent or greater for all conditions near critical 
mass-flow ratios. The turbulence index (TI2) was nominally less than 2 percent near the 
critical mass-flow ratio. 
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4.1.3    Effect of Bypass Door Variation 

Data in Figs. 19 and 20 represent the effects of bypass door flow on the inlet 
performance. The data shown represent the conditions of peak recovery at M„ = 2.2. 
At M„, = 1.4, the peak recovery points with the bypass doors open were compared to 
the recovery point at 95 percent of supercritical mass flow with the bypass doors closed. 

Each .inlet was affected in a similar manner at both Mach numbers. At M^ = 1.4, 
the inlet performance was not significantly affected by bypass mass flow. At M. = 2.2, 
the maximum inlet performance was obtained with the bypass doors closed. 

4.2 EFFECT OF SOFT-RIDE FINS 

The effect of soft-ride fins is shown in Figs. 21 and 22 for M„, = 0.85 and 1.4, 
respectively. There was a slight reduction in the supercritical mass flow for both inlets 
at M„ = 0.85, a = 3 deg. The inboard inlet exhibited the same characteristics at M„ = 
1.4, a = 0 deg, but the outboard inlet was not affected. Performance at subcritical and 
critical mass-flow ratios was essentially not affected. 

4.3 GENERAL PERFORMANCE 

The general performance of the inlet system is shown as functions of angle of attack, 
Figs. 23 through 26, angle of yaw, Figs. 27 through 30, and Mach number, Fig. 31. All 
second-ramp angles were according to the schedules as shown in Figs. 11 and 12. At 
M„„ = 2.2, a TH/TU = 105 percent, which is a relatively high performance throat height, 
was used for comparative purposes. 

4.3.1    Effect of Angle of Attack and Yaw 

With the inlets located beneath the wing of this sweptwing configuration, variations 
in free-stream angle of attack and yaw were felt by the inlet as perturbations on the 
wing flow field in deference to the more direct effects felt by exposed inlets. For subsonic 
Mach numbers (M^, = 0.85, Fig. 12), high angles of attack produced a loss in performance 
of the leeward (outboard) inlet, but performance of the windward (inboard) inlet was 
virtually unaffected. At supersonic Mach numbers, a different phenomenon was noted. 
An omen of this phenomenon can be seen in Table I; the high outwash along the lower 
surface of the wing at high angles of attack greatly reduced the inboard first-ramp Mach 
number but left the outboard value relatively unchanged. Thus the variations in inlet 
performance shown in Figs. 24, 25, and 26 were to be expected: (1) an increase in 
supercritical mass-flow ratios and an improvement in performance of the inboard inlet 
as angle of attack increased (ramp Mach number decreased) and (2) little change in the 
outboard inlet performance; some decrease was noted at M,,. = 1.4 where the first-ramp 
Mach number increased slightly, and some increase at M,„ =. 2.2 where a small decrease 
in ramp Mach number was noted. 

Table I also portrays the affect of the angle of yaw. For angles of attack less than 
3 deg, performance was essentially the same for both inlets with a reflection effect in 
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which the performance at positive yaw angles for the inboard inlet was the same as for 
the outboard inlet at negative angles of yaw (Figs. 27a, 28a, 29a, and. 30a). At the higher 
angles of attack of 9 to 18 deg (Figs. 27b, 28b, 29b, and 30b), the effect of yaw variation 
upon the inboard inlet was small when compared to the outboard inlet. The outwash 
at those conditions affected the leeward (outboard) inlet more at negative yaw angles 
than the windward (inboard) inlet at positive yaw angles. The difference diminished as 
M«, increased. 

4.3.2    Effect of Mach Number 

Figure 31 shows the variation in inlet performance for the Mach number range from 
0.55 to 2.2, ^ = 0 deg, for a representative angle of attack at the scheduled second-ramp 
angles and throat heights. 

The overall trends were those expected for a well-designed mixed-compression inlet 
with the lowest peak recovery of about 92 percent at critical mass-flow ratio at M„ = 
2.2. In general, the total-pressure distortion was 10 percent or higher for critical mass-flow 
ratios. As expected, the turbulence index for both inlets increased as mass-flow ratio 
increased but was less than 2 percent for critical mass-flow ratios. Figure 32 presents 
typical compressor-face pressure profiles for critical and supercritical mass-flow ratios at 
M« = 2.2. As the mass-flow ratio increased from critical to supercritical, the low pressure 
region behind the ramp side of both inlets increased in magnitude and area. For the 
supercritical conditions, the areas of higher total-pressure recovery were also areas of higher 
turbulence. 

SECTION V 
CONCLUSIONS 

Based on results obtained during this test, the following conclusions are made: 

1. Equal or better inlet performance characteristics were obtained with the 
scheduled second-ramp angles and throat heights than with the off-schedule 
values. 

2. High second-ramp angles induced choking ahead of the throat ramp at a 
Mach number of 0.85 for large throat heights and caused flow spillage at 
Mach numbers of 1.7 and 2.2. 

3. Increasing the throat height for any given second-ramp angle increased the 
supercritical mass-flow ratio for Mach numbers from 0.85 to 1.7(unstarted 
inlet) but as the throat height was increased at a Mach number of 2.2 
(started inlet) a loss in total-pressure recovery resulted. 

4. Increasing the bypass mass flow at a Mach number of 2.2 resulted in a 
loss in inlet performance. Only small effects were noted at a Mach number 
of 1.4. 
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5. Installation of soft-ride fins produced negligible effects on inlet performance. 

6. Effects of angle of attack and yaw on inlet performance were attributed 
to sidewash effects characteristic of sweptwing aircraft. 

7. For supercritical operation, the areas of higher inlet turbulence on the engine 
face occurred in areas of higher total-pressure recovery. 

8. For a representative cruise angle of attack and 0-deg angle of yaw, the 
lowest total-pressure recovery at critical mass-flow ratio was 92 percent at 
a Mach number of 2.2 with scheduled second-ramp angles and throat heights. 

9. The inlet total-pressure distortion was 10 percent or greater at critical 
mass-flow ratios. This is higher than normally desired for satisfactory turbine 
engine operation. 
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